Первод чисел со знаком в двоичный код

Представление целых чисел: прямой код, код со сдвигом, дополнительный код — Викиконспекты

первод чисел со знаком в двоичный код

Перевод чисел из десятичной системы в двоичную. . в десятичную систему, и уже после этого менять знак десятичного числа на. Представление целых и вещественных чисел в памяти компьютера. в памяти ЭВМ (как числовой, так и не числовой) используется двоичный способ кодирования. В случае представления величины со знаком самый левый (старший) Если число окажется положительным, то просто перевести его код в. Прямой код — способ представления двоичных чисел с состоит из одноразрядного кода знака (битового знака) — двоичной цифры 0, . А как перевести 0, в прямой,обратный и дополнительный коды?.

Для перевода числа из двоичной системы счисления в шестнадцатеричную надо число разбить на четверки влево и вправо от запятой. Крайние группы, если необходимо дополнить нулями. Затем каждую четверку двоичных цифр заменить соответствующей шестнадцатеричной цифрой. Эти правила зависят от того, в какой системе счисления осуществляются арифметические операции, связанные с преобразованием чисел, - в той, в какой представлено исходное число, или в той, в которую оно переводится.

Задано число С, представленное в системе счисления с основанием S: Нужно перевести его в h-систему, выполняя действия в новой системе счисления.

Лекция 110. Арифметика отрицательных чисел в микропроцессорах

Для этого нужно представить его в виде суммы степеней S: Все действия надо выполнять в h-системе. Очевидно, что как в десятичном, так и в двоичном коде, складывать значительно проще, чем вычитать.

первод чисел со знаком в двоичный код

Поэтому большое распространение получила двоичная арифметика с учетом знаков чисел, где вычитание заменяется сложением чисел с учетом их знака. При этом уже не имеет значения соотношение чисел между собой, какое из них больше - вычитаемое или уменьшаемое.

Знак разности получается автоматически. Двоичная арифметика с учетом знаков чисел Прямой, обратный и дополнительный коды В двоичном коде знак числа представляет собой разряд, приписываемый слева от значащих разрядов числа. Знак " " обозначается логическим " - логической. Для наглядности все примеры будем рассматривать для целых чисел, отделяя знаковый разряд точкой.

Как расписать целое отрицательное число в двоичном коде?

Прямой код ПК и для отрицательных, и для положительных чисел образуется одинаково, простым дописыванием знакового разряда. Здесь также имеют место рассмотренные выше шесть случаев: Здесь нет отличий от случая 1, рассмотренного для обратного кода.

Получен правильный результат в дополнительном коде. При переводе в прямой код биты цифровой части результата инвертируются и к младшему разряду прибавляется единица: Единицу переноса из знакового разряда компьютер отбрасывает.

Случаи переполнения для дополнительных кодов рассматриваются по аналогии со случаями 5 и 6 для обратных кодов.

  • Представление числовых данных в памяти ЭВМ
  • Прямой, дополнительный и обратный коды
  • Двоично дополнительный код

Сравнение рассмотренных форм кодирования целых чисел со знаком показывает: Умножение и деление Во многих компьютерах умножение производится как последовательность сложений и сдвигов. Для этого в АЛУ имеется регистр, называемый накапливающим сумматором, который до начала выполнения операции содержит число ноль. Другой регистр АЛУ, участвующий в выполнении этой операции, вначале содержит множитель. Затем по мере выполнения сложений содержащееся в нем число уменьшается, пока не достигнет нулевого значения.

Для иллюстрации умножим на Деление для компьютера является трудной операцией. Обычно оно реализуется путем многократного прибавления к делимому дополнительного кода делителя.

Двоичные числа и двоичная арифметика

Как представляются в компьютере вещественные числа? Система вещественных чисел в математических вычислениях предполагается непрерывной и бесконечной, то есть не имеющей ограничений на диапазон и точность представления чисел. Однако в компьютерах числа хранятся в регистрах и ячейках памяти с ограниченным количеством разрядов. В следствие этого система вещественных чисел, представимых в машине, является дискретной прерывной и конечной.

При написании вещественных чисел в программах вместо привычной запятой принято ставить точку. Для отображения вещественных чисел, которые могут быть как очень маленькими, так и очень большими, используется форма записи чисел с порядком основания системы счисления. Например, десятичное число 1. Такой способ записи чисел называется представлением числа с плавающей точкой. Если "плавающая" точка расположена в мантиссе перед первой значащей цифрой, то при фиксированном количестве разрядов, отведённых под мантиссу, обеспечивается запись максимального количества значащих цифр числа, то есть максимальная точность представления числа в машине.

первод чисел со знаком в двоичный код

Мантисса должна быть правильной дробью, у которой первая цифра после точки запятой в обычной записи отлична от нуля: Вещественные числа в компьютерах различных типов записываются по-разному, тем не менее, все компьютеры поддерживают несколько международных стандартных форматов, различающихся по точности, но имеющих одинаковую структуру следующего вида: Здесь порядок n-разрядного нормализованного числа задается в так называемой смещенной форме: Использование смещенной формы позволяет производить операции над порядками, как над беззнаковыми числами, что упрощает операции сравнения, сложения и вычитания порядков, а также упрощает операцию сравнения самих нормализованных чисел.